§ 172.255 (d) Petroleum naphtha is used or intended for use as a solvent in protective coatings on fresh citrus fruit in compliance with §172.210. [42 FR 14491, Mar. 15, 1977, as amended at 47 FR 11835, Mar. 19, 1982; 49 FR 10104, Mar. 19, 1984; 54 FR 24896, June 12, 1989] ## §172.255 Polyacrylamide. Polyacrylamide containing not more than 0.2 percent of acrylamide monomer may be safely used as a film former in the imprinting of soft-shell gelatin capsules when the amount used is not in excess of the minimum reouired to produce the intended effect. ## § 172.260 Oxidized polyethylene. Oxidized polyethylene may be safely used as a component of food, subject to the following restrictions: - (a) Oxidized polyethylene is the basic resin produced by the mild air oxidation of polyethylene. The polyethylene used in the oxidation process conforms to the density, maximum n-hexane extractable fraction, and maximum xylene soluble fraction specifications prescribed in item 2.3 of the table in §177.1520(c) of this chapter. oxidized polyethylene has a minimum number average molecular weight of 1.200, as determined by high temperature vapor pressure osmometry; contains a maximum of 5 percent by weight of total oxygen; and has an acid value of 9 to 19. - (b) The additive is used or intended for use as a protective coating or component of protective coatings for fresh avocados, bananas, beets, coconuts, eggplant, garlic, grapefruit, lemons, limes, mango, muskmelons, onions, oranges, papaya, peas (in pods), pineapple, plantain, pumpkin, rutabaga, squash (acorn), sweetpotatoes, tangerines, turnips, watermelon, Brazil nuts, chestnuts, filberts, hazelnuts, pecans, and walnuts (all nuts in shells). - (c) The additive is used in accordance with good manufacturing practice and in an amount not to exceed that required to produce the intended effect. # § 172.270 Sulfated butyl oleate. Sulfate butyl oleate may be safely used in food, subject to the following prescribed conditions: - (a) The additive is prepared by sulfation, using concentrated sulfuric acid, of a mixture of butyl esters produced by transesterification of an edible vegetable oil using 1-butanol. Following sulfation, the reaction mixture is washed with water and neutralized with aqueous sodium or potassium hydroxide. Prior to sulfation, the butyl oleate reaction mixture meets the following specifications: - (1) Not less than 90 percent butyl oleate. - (2) Not more than 1.5 percent unsaponifiable matter. - (b) The additive is used or intended for use at a level not to exceed 2 percent by weight in an aqueous emulsion in dehydrating grapes to produce raisins, whereby the residue of the additive on the raisins does not exceed 100 parts per million. [57 FR 12711, Apr. 13, 1992] #### § 172.275 Synthetic paraffin and succinic derivatives. Synthetic paraffin and succinic derivatives identified in this section may be safely used as a component of food, subject to the following restrictions: - (a) The additive is prepared with 50 percent Fischer-Tropsch process synthetic paraffin, meeting the definition and specifications of §172.615, and 50 percent of such synthetic paraffin to which is bonded succinic anhydride and succinic acid derivatives of isopropyl alcohol, polyethylene glycol, and polypropylene glycol. It consists of a mixture of the Fischer-Tropsch process paraffin (alkane), alkyl succinic anhydride, alkyl succinic anhydride isopropyl half ester, dialkyl succinic anhydride polyethylene glycol half ester, and dialkyl succinic anhydride polypropylene glycol half ester, where the alkane (alkyl) has a chain length of 30-70 carbon atoms and the polyethylene and polypropylene glycols have molecular weights of 600 and 260, respectively. - (b) The additive meets the following specifications: Molecular weight, 880–930; melting point, 215°–217 °F; acid number, 43–47; and saponification number. 75–78. - (c) It is used or intended for use as a protective coating or component of